

 Navigation

 	
 index

 	LombScargle.jl 0.0.2 documentation

LombScargle.jl

Introduction

LombScargle.jl [https://github.com/giordano/LombScargle.jl] is a Julia [http://julialang.org/] package to estimate the frequency spectrum [https://en.wikipedia.org/wiki/Frequency_spectrum] of a periodic signal with
the Lomb–Scargle periodogram [https://en.wikipedia.org/wiki/The_Lomb–Scargle_periodogram].

Another Julia package that provides tools to perform spectral analysis of
signals is DSP.jl [https://github.com/JuliaDSP/DSP.jl], but its methods
require that the signal has been sampled at equally spaced times. Instead, the
Lomb–Scargle periodogram enables you to analyze unevenly sampled data as well,
which is a fairly common case in astronomy.

The algorithm used in this package are reported in the following papers:

	[TOW10]	Townsend, R. H. D. 2010, ApJS, 191, 247 (URL:
http://dx.doi.org/10.1088/0067-0049/191/2/247, Bibcode:
http://adsabs.harvard.edu/abs/2010ApJS..191..247T)

	[ZK09]	(1, 2, 3, 4, 5) Zechmeister, M., Kürster, M. 2009, A&A, 496, 577 (URL:
http://dx.doi.org/10.1051/0004-6361:200811296, Bibcode:
http://adsabs.harvard.edu/abs/2009A%26A...496..577Z)

Othe relevant papers are:

	[CMB99]	(1, 2, 3) Cumming, A., Marcy, G. W., & Butler, R. P. 1999, ApJ, 526, 890 (URL:
http://dx.doi.org/10.1086/308020, Bibcode:
http://adsabs.harvard.edu/abs/1999ApJ...526..890C)

	[CUM04]	(1, 2, 3) Cumming, A. 2004, MNRAS, 354, 1165 (URL:
http://dx.doi.org/10.1111/j.1365-2966.2004.08275.x, Bibcode:
http://adsabs.harvard.edu/abs/2004MNRAS.354.1165C)

	[HB86]	Horne, J. H., & Baliunas, S. L. 1986, ApJ, 302, 757 (URL:
http://dx.doi.org/10.1086/164037, Bibcode:
http://adsabs.harvard.edu/abs/1986ApJ...302..757H)

	[LOM76]	Lomb, N. R. 1976, Ap&SS, 39, 447 (URL:
http://dx.doi.org/10.1007/BF00648343, Bibcode:
http://adsabs.harvard.edu/abs/1976Ap%26SS..39..447L)

	[SCA82]	Scargle, J. D. 1982, ApJ, 263, 835 (URL:
http://dx.doi.org/10.1086/160554, Bibcode:
http://adsabs.harvard.edu/abs/1982ApJ...263..835S)

	[SS10]	Sturrock, P. A., & Scargle, J. D. 2010, ApJ, 718, 527 (URL:
http://dx.doi.org/10.1088/0004-637X/718/1/527, Bibcode:
http://adsabs.harvard.edu/abs/2010ApJ...718..527S)

Installation

LombScargle.jl is available for Julia 0.4 and later versions, and can be
installed with Julia built-in package manager [http://docs.julialang.org/en/stable/manual/packages/]. In a Julia session
run the command

julia> Pkg.add("LombScargle")

You may need to update your package list with Pkg.update() in order to get
the latest version of LombScargle.jl.

Usage

After installing the package, you can start using it with

using LombScargle

The module defines a new LombScargle.Periodogram data type, which, however,
is not exported because you will most probably not need to directly manipulate
LombScargle.Periodogram objects. This data type holds both the frequency
and the power vectors of the periodogram.

The main function provided by the package is lombscargle:

	
lombscargle(times::AbstractVector{Real}, signal::AbstractVector{Real})

	

which returns a LombScargle.Periodogram. The mandatory arguments are:

	times: the vector of observation times

	signal: the vector of observations associated with times

All these vectors must have the same length. The complete syntax of
lombscargle is the following:

lombscargle(times::AbstractVector{Real}, signal::AbstractVector{Real},
 errors::AbstractVector{Real}=ones(signal);
 normalization::AbstractString="standard",
 noise_level::Real=1.0,
 center_data::Bool=true, fit_mean::Bool=true,
 samples_per_peak::Integer=5,
 nyquist_factor::Integer=5,
 minimum_frequency::Real=NaN,
 maximum_frequency::Real=NaN,
 frequencies::AbstractVector{Real}=
 autofrequency(times,
 samples_per_peak=samples_per_peak,
 nyquist_factor=nyquist_factor,
 minimum_frequency=minimum_frequency,
 maximum_frequency=maximum_frequency))

In addition to the above mentioned mandatory argument, there is an optional
argument:

	errors: the uncertainties associated to each signal point

Also errors must have the same length as times and signal.

Optional keyword arguments are:

	normalization: how to normalize the periodogram. Valid choices are:
"standard", "model", "log", "psd", "Scargle",
"HorneBaliunas", "Cumming". See Normalization section for details

	noise_level: the noise level used to normalize the periodogram when
normalization is set to "Scargle"

	fit_mean: if true, fit for the mean of the signal using the
Generalised Lomb–Scargle algorithm (see [ZK09]). If this is false, the
original algorithm by Lomb and Scargle will be employed (see [TOW10]), which
does not take into account a non-null mean and uncertainties for observations

	center_data: if true, subtract the mean of signal from signal
itself before performing the periodogram. This is especially important if
fit_mean is false

	frequencies: the frequecy grid (not angular frequencies) at which the
periodogram will be computed, as a vector. If not provided, it is
automatically determined with LombScargle.autofrequency function, which
see. See below for other available keywords that can be used to adjust the
frequency grid without directly setting frequencies

In addition, you can use all optional keyword arguments of
LombScargle.autofrequency function in order to tune the
frequencies vector without calling the function:

	samples_per_peak: the approximate number of desired samples
across the typical peak

	nyquist_factor: the multiple of the average Nyquist frequency
used to choose the maximum frequency if maximum_frequency is not
provided

	minimum_frequency: if specified, then use this minimum frequency
rather than one chosen based on the size of the baseline

	maximum_frequency: if specified, then use this maximum frequency
rather than one chosen based on the average Nyquist frequency

The frequency grid is determined by following prescriptions given at
https://jakevdp.github.io/blog/2015/06/13/lomb-scargle-in-python/ and
uses the same keywords names adopted in Astropy.

If the signal has uncertainties, the signal vector can also be a vector of
Measurement objects (from Measurements.jl [https://github.com/giordano/Measurements.jl] package), in which case you
don’t need to pass a separate errors vector for the uncertainties of the
signal. You can create arrays of Measurement objects with the
measurement function, see Measurements.jl manual at
http://measurementsjl.readthedocs.io/ for more details.

Normalization

By default, the periodogram \(p(f)\) is normalized so that it has values in
the range \(0 \leq p(f) \leq 1\), with \(p = 0\) indicating no
improvement of the fit and \(p = 1\) a “perfect” fit (100% reduction of
\(\chi^2\) or \(\chi^2 = 0\)). This is the normalization suggested by
[LOM76] and [ZK09], and corresponds to the "standard" normalization in
lombscargle() function. [ZK09] wrote the formula for the power of the
periodogram at frequency \(f\) as

$$ p(f) = \frac{1}{YY}\left[\frac{YC^2_{\tau}}{CC_{\tau}} + \frac{YS^2_{\tau}}{SS_{\tau}}\right] $$

See the paper for details. The other normalizations for periodograms
\(P(f)\) are calculated from this one. In what follows, \(N\) is the
number of observations.

	"model":
$$ P(f) = \frac{p(f)}{1 - p(f)} $$

	"log":
$$ P(f) = -\log(1 - p(f)) $$

	"psd":
$$ P(f) = \frac{1}{2}\left[\frac{YC^2_{\tau}}{CC_{\tau}} +
\frac{YS^2_{\tau}}{SS_{\tau}}\right] = p(f) \frac{YY}{2} $$

	"Scargle":
$$ P(f) = \frac{p(f)}{\text{noise level}} $$
This normalization can be used when you know the noise level (expected from
the a priori known noise variance or population variance), but this isn’t
usually the case. See [SCA82]

	"HorneBaliunas":
$$ P(f) = \frac{N - 1}{2} p(f) $$
This is like the "Scargle" normalization, where the noise has been
estimated for Gaussian noise to be \((N - 1)/2\). See [HB86]

	If the data contains a signal or if errors are under- or overestimated or if
intrinsic variability is present, then \((N-1)/2\) may not be a good
uncorrelated estimator for the noise level. [CMB99] suggested to estimate
the noise level a posteriori with the residuals of the best fit and normalised
the periodogram as:
$$ P(f) = \frac{N - 3}{2} \frac{p(f)}{1 - p(f_{\text{best}})} $$
This is the "Cumming" normalization option

Access Frequency Grid and Power Spectrum of the Periodogram

	
power(p::Periodogram)

	

	
freq(p::Periodogram)

	

	
freqpower(p::Periodogram)

	

lombscargle() function return a LombScargle.Periodogram object, but
you most probably want to use the frequency grid and the power spectrum. You can
access these vectors with freq and power functions, just like in
DSP.jl package. If you want to get the 2-tuple (freq(p), power(p)) use
the freqpower function.

Find Highest Power and Associated Frequencies

	
findmaxpower(p::Periodogram)

	

	
findmaxfreq(p::Periodogram, threshold::Real=findmaxpower(p))

	

Once you compute the periodogram, you usually want to know which are the
frequencies with highest power. To do this, you can use the findmaxfreq.
It returns the vector of frequencies with the highest power in the periodogram
p. If a second argument threshold is provided, return the frequencies
with power larger than or equal to threshold. The value of the highest
power of a periodogram can be calculated with the findmaxpower function.

False-Alarm Probability

	
prob(P::Periodogram, p_0::Real)

	

	
probinv(P::Periodogram, prob::Real)

	

	
fap(P::Periodogram, p_0::Real)

	

	
fapinv(P::Periodogram, fap::Real)

	

Noise in the data produce fluctuations in the periodogram that will present
several local peaks, but not all of them related to real periodicities. The
significance of the peaks can be tested by calculating the probability that its
power can arise purely from noise. The higher the value of the power, the lower
will be this probability.

Note

[CMB99] showed that the different normalizations result in different
probability functions. LombScargle.jl can calculate the probability (and
the false-alarm probability) only for the normalizations reported by [ZK09],
that are "standard", "Scargle", "HorneBaliunas", and
"Cumming".

The probability \(\text{Prob}(p > p_{0})\) that the periodogram power
\(p\) can exceed the value \(p_{0}\) can be calculated with the prob
function, whose first argument is the periodogram and the second one is the
\(p_{0}\) value. The function probinv is its inverse: it takes the
probability as second argument and returns the corresponding \(p_{0}\)
value.

Here are the probability functions for each normalization supported by
LombScargle.jl:

	"standard" (\(p \in [0, 1]\)):
$$ \text{Prob}(p > p_{0}) = (1 - p_{0})^{(N - 3)/2} $$

	"Scargle" (\(p \in [0, \infty)\)):
$$ \text{Prob}(p > p_{0}) = \exp(-p_{0}) $$

	"HorneBaliunas" (\(p \in [0, (N - 1)/2]\)):
$$ \text{Prob}(p > p_{0}) = \left(1 - \frac{2p_{0}}{N - 1}\right)^{(N - 3)/2} $$

	"Cumming" (\(p \in [0, \infty)\)):
$$ \text{Prob}(p > p_{0}) = \left(1 + \frac{2p_{0}}{N - 3}\right)^{-(N - 3)/2} $$

As explained by [SS10], «the term “false-alarm probability” denotes the
probability that at least one out of \(M\) independent power values in a
prescribed search band of a power spectrum computed from a white-noise time
series is expected to be as large as or larger than a given value».
LombScargle.jl provides the fap function to calculate the false-alarm
probability (FAP) of a given power in a periodogram. Its first argument is the
periodogram, the second one is the value \(p_{0}\) of the power of which you
want to calculate the FAP. The function fap uses the formula

$$ \text{FAP} = 1 - (1 - \text{Prob}(p > p_{0}))^M $$

where \(M\) is the number of independent frequencies estimated with \(M
= T \cdot \Delta f\), being \(T\) the duration of the observations and
\(\Delta f\) the width of the frequency range in which the periodogram has
been calculated (see [CUM04]). The function fapinv is the inverse of
fap: it takes as second argument the value of the FAP and returns the
corresponding value \(p_{0}\) of the power.

The detection threshold \(p_{0}\) is the periodogram power corresponding to
some (small) value of \(\text{FAP}\), i.e. the value of \(p\) exceeded
due to noise alone in only a small fraction \(\text{FAP}\) of trials. An
observed power larger than \(p_{0}\) indicates that a signal is likely
present (see [CUM04]).

Caution

Some authors stressed that this method to calculate the false-alarm
probability is not completely reliable. A different approach to calculate
the false-alarm probability is to perform Monte Carlo or bootstrap
simulations in order to determine how often a certain power level
\(p_{0}\) is exceeded just by chance (see [CMB99], [CUM04], and
[ZK09]).

Examples

Here is an example of a noisy periodic signal (\(\sin(\pi t) +
1.5\cos(2\pi t)\)) sampled at unevenly spaced times.

using LombScargle
ntimes = 1001
Observation times
t = linspace(0.01, 10pi, ntimes)
Randomize times
t += step(t)*rand(ntimes)
The signal
s = sinpi(t) + 1.5cospi(2t) + rand(ntimes)
pgram = lombscargle(t, s)

You can plot the result, for example with PyPlot [https://github.com/stevengj/PyPlot.jl] package. Use freqpower function
to get the frequency grid and the power of the periodogram as a 2-tuple.

using PyPlot
plot(freqpower(pgram)...)

[image: _images/figure_1.png]

Caution

If you use original Lomb–Scargle algorithm (fit_mean=false keyword to
lombscargle() function) without centering the data
(center_data=false) you can get inaccurate results. For example,
spurious peaks at low frequencies can appear and the real peaks lose power:

plot(freqpower(lombscargle(t, s, fit_mean=false, center_data=false))...)

[image: _images/figure_2.png]

Tip

You can tune the frequency grid with appropriate keywords to
lombscargle() function. For example, in order to increase the sampling
increase samples_per_peak, and set maximum_frequency to lower values
in order to narrow the frequency range:

plot(freqpower(lombscargle(t, s, samples_per_peak=20, maximum_frequency=1.5))...)

[image: _images/figure_3.png]
If you simply want to use your own frequency grid, directly set the
frequencies keyword:

plot(freqpower(lombscargle(t, s, frequencies=0.001:1e-3:1.5))...)

[image: _images/figure_4.png]

Signal with Uncertainties

The generalised Lomb–Scargle periodogram (used when the fit_mean optional
keyword is true) is able to handle a signal with uncertainties, and they
will be used as weights in the algorithm. The uncertainties can be passed
either as the third optional argument errors to lombscargle() or by
providing this function with a signal vector of type Measurement (from
Measurements.jl [https://github.com/giordano/Measurements.jl] package).

using Measurements, PyPlot
ntimes = 1001
t = linspace(0.01, 10pi, ntimes)
s = sinpi(2t)
errors = rand(0.1:1e-3:4.0, ntimes)
plot(freqpower(lombscargle(t, s, errors, maximum_frequency=1.5))...)
plot(freqpower(lombscargle(t, measurement(s, errors), maximum_frequency=1.5))...)

[image: _images/figure_5.png]

findmaxfreq and findmaxpower Functions

findmaxfreq function tells you the frequencies with the highest
power in the periodogram (and you can get the period by taking its
inverse):

t = linspace(0, 10, 1001)
s = sinpi(2t)
p = lombscargle(t, s)
1.0./findmaxfreq(p) # Period with highest power
=> 1-element Array{Float64,1}:
0.00502487

This peak is at high frequency, very far from the expected value of the period
of 1. In order to find the real peak, you can either narrow the frequency range
in order to exclude higher armonics, or pass the threshold argument to
findmaxfreq. You can use findmaxpower to discover the highest power in
the periodogram:

findmaxpower(p)
=> 0.9712085205753647
1.0./findmaxfreq(p, 0.97)
=> 5-element Array{Float64,1}:
1.0101
0.0101
0.00990197
0.00502487
0.00497537

The first peak is the real one, the other double peaks appear at higher
armonics.

Tip

Usually plotting the periodogram can give you a clue of what’s going on.

Development

The package is developed at https://github.com/giordano/LombScargle.jl.
There you can submit bug reports, make suggestions, and propose pull
requests.

History

The ChangeLog of the package is available in
NEWS.md [https://github.com/giordano/LombScargle.jl/blob/master/NEWS.md]
file in top directory.

License

The LombScargle.jl package is licensed under the MIT “Expat”
License. The original author is Mosè Giordano.

 Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	LombScargle.jl 0.0.2 documentation

Index

 F
 | L
 | P

F

 	

 	fap() (built-in function)

 	fapinv() (built-in function)

 	findmaxfreq() (built-in function)

 	

 	findmaxpower() (built-in function)

 	freq() (built-in function)

 	freqpower() (built-in function)

L

 	

 	lombscargle() (built-in function)

P

 	

 	power() (built-in function)

 	prob() (built-in function)

 	

 	probinv() (built-in function)

 Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		LombScargle.jl 0.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Mose' Giordano.
 Created using Sphinx 1.3.5.

_images/figure_4.png
0.7

0.6

05

0.4

0.3

0.2

0.1

o3

04

o6

o8

10

T3

12

16

_static/up.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_images/figure_1.png
0.7

0.6

05

0.4

0.3

0.2

0.1

o5

10

15

30

_images/figure_2.png
0.6

05

0.4

0.3

0.2

0.1

o5

10

15

30

_static/up-pressed.png

_static/comment-bright.png

_images/figure_3.png
0.7

0.6

05

0.4

0.3

0.2

0.1

o3

04

o6

o8

10

T3

14

16

_images/figure_5.png
1.0

0.8

0.6

0.4

0.2

03

04

06

08

10

13

1a

16

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

